Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 888
Filtrar
1.
J Biomol Struct Dyn ; 41(9): 3762-3771, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35318896

RESUMO

Zika virus (ZIKV), an RNA virus, rapidly spreads Aedes mosquito-borne sickness. Currently, there are neither effective vaccines nor therapeutics available to prevent or treat ZIKV infection. In this study, to address these unmet medical needs, we aimed to design B- and T-cell candidate multi-epitope-based subunit against ZIKV using an in silico approach. In this study we applied immunoinformatics, molecular docking, and dynamic simulation assessments targeting the most immunogenic proteins; the capsid (C), envelope (E) proteins and the non-stuctural protein (NS1), described in our previous study, and which predicted immunodominant B and T cell epitopes. The final non-allergenic and highly antigenic multi-epitope was constituted of immunogenic screened-epitopes (3 CTL and 3 HTL) and the ß-defensin as an adjuvant that have been linked using EAAAK, AAY, and GPGPG linkers, respectively. The final construct containing 143 amino acids was characterized for its allergenicity, antigenicity, and physiochemical properties; and found to be safe and immunogenic with a good prediction of solubility. The existence of IFN-γ epitopes asserts the capacity to trigger strong immune responses. Subsequently, the molecular docking among vaccine and immune receptors (TLR2/TLR4) was revealed with a good binding affinity with and stable molecular interactions. Molecular dynamics simulation confirmed the stability of the complexes. Finally, the construct was subjected to in silico cloning demonstrating the efficiently of its expression in E.coli. However, this study needs the experimental validation to demonstrate vaccine safety and efficacy.Communicated by Ramaswamy H. Sarma.


Assuntos
Simulação por Computador , Epitopos de Linfócito B , Epitopos de Linfócito T , Vacinas Virais , Infecção por Zika virus , Zika virus , Clonagem Molecular , Códon/genética , Epitopos de Linfócito B/química , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/química , Epitopos de Linfócito T/imunologia , Simulação de Acoplamento Molecular , Solubilidade , Receptores Toll-Like/imunologia , Vacinas Virais/efeitos adversos , Vacinas Virais/química , Vacinas Virais/imunologia , Zika virus/química , Zika virus/imunologia , Infecção por Zika virus/imunologia , Infecção por Zika virus/prevenção & controle , Humanos
2.
J Mol Biol ; 434(19): 167759, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35872070

RESUMO

The interferon-induced transmembrane (IFITM) proteins broadly inhibit the entry of diverse pathogenic viruses, including Influenza A virus (IAV), Zika virus, HIV-1, and SARS coronaviruses by inhibiting virus-cell membrane fusion. IFITM3 was previously shown to disrupt cholesterol trafficking, but the functional relationship between IFITM3 and cholesterol remains unclear. We previously showed that inhibition of IAV entry by IFITM3 is associated with its ability to promote cellular membrane rigidity, and these activities are functionally linked by a shared requirement for the amphipathic helix (AH) found in the intramembrane domain (IMD) of IFITM3. Furthermore, it has been shown that the AH of IFITM3 alters lipid membranes in vitro in a cholesterol-dependent manner. Therefore, we aimed to elucidate the relationship between IFITM3 and cholesterol in more detail. Using a fluorescence-based in vitro binding assay, we found that a peptide derived from the AH of IFITM3 directly interacted with the cholesterol analog, NBD-cholesterol, while other regions of the IFITM3 IMD did not, and native cholesterol competed with this interaction. In addition, recombinant full-length IFITM3 protein also exhibited NBD-cholesterol binding activity. Importantly, previously characterized mutations within the AH of IFITM3 that strongly inhibit antiviral function (F63Q and F67Q) disrupted AH structure in solution, inhibited cholesterol binding in vitro, and restricted bilayer insertion in silico. Our data suggest that direct interactions with cholesterol may contribute to the inhibition of membrane fusion pore formation by IFITM3. These findings may facilitate the design of therapeutic peptides for use in broad-spectrum antiviral therapy.


Assuntos
Colesterol , Vírus da Influenza A , Proteínas de Membrana , Proteínas de Ligação a RNA , Colesterol/química , Humanos , Vírus da Influenza A/imunologia , Proteínas de Membrana/química , Conformação Proteica em alfa-Hélice , Proteínas de Ligação a RNA/química , Internalização do Vírus , Zika virus/imunologia
3.
J Virol ; 96(11): e0007122, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35575481

RESUMO

Zika virus (ZIKV) is a global public health concern due to its ability to cause congenital Zika syndrome and lack of approved vaccine, therapeutic, or other control measures. We discovered eight novel rabbit monoclonal antibodies (MAbs) that bind to distinct ZIKV envelope protein epitopes. The majority of the MAbs were ZIKV specific and targeted the lateral ridge of the envelope (E) protein domain III, while the MAb with the highest neutralizing activity recognized a putative quaternary epitope spanning E protein domains I and III. One of the non-neutralizing MAbs specifically recognized ZIKV precursor membrane protein (prM). Somatic hypermutation of immunoglobulin variable regions increases antibody affinity maturation and triggers antibody class switching. Negative correlations were observed between the somatic hypermutation rate of the immunoglobulin heavy-chain variable region and antibody binding parameters such as equilibrium dissociation constant, dissociation constant, and half-maximal effective concentration value of MAb binding to ZIKV virus-like particles. Complementarity-determining regions recognize the antigen epitopes and are scaffolded by canonical framework regions. Reversion of framework region amino acids to the rabbit germ line sequence decreased anti-ZIKV MAb binding activity of some MAbs. Thus, antibody affinity maturation, including somatic hypermutation and framework region mutations, contributed to the binding and function of these anti-ZIKV MAbs. IMPORTANCE ZIKV is a global health concern against which no vaccine or therapeutics are available. We characterized eight novel rabbit monoclonal antibodies recognizing ZIKV envelope and prM proteins and studied the relationship between somatic hypermutation of complementarity-determining regions, framework regions, mutations, antibody specificity, binding, and neutralizing activity. The results contribute to understanding structural features and somatic mutation pathways by which potent Zika virus-neutralizing antibodies can evolve, including the role of antibody framework regions.


Assuntos
Anticorpos Monoclonais , Anticorpos Antivirais , Hipermutação Somática de Imunoglobulina , Zika virus , Animais , Anticorpos Monoclonais/genética , Anticorpos Neutralizantes/genética , Anticorpos Antivirais/genética , Regiões Determinantes de Complementaridade/genética , Epitopos/genética , Mutação , Coelhos , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Zika virus/imunologia
4.
MMWR Morb Mortal Wkly Rep ; 71(10): 375-377, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35271558

RESUMO

The diagnosis of dengue disease, caused by the dengue virus (DENV) (a flavivirus), often requires serologic testing during acute and early convalescent phases of the disease. Some symptoms of DENV infection, such as nonspecific fever, are similar to those caused by infection with SARS-CoV-2, the virus that causes COVID-19. In studies with few COVID-19 cases, positive DENV immunoglobulin M (IgM) results were reported with various serologic tests, indicating possible cross-reactivity in these tests for DENV and SARS-CoV-2 infections (1,2). DENV antibodies can cross-react with other flaviviruses, including Zika virus. To assess the potential cross-reactivity of SARS-CoV-2, DENV, and Zika virus IgM antibodies, serum specimens from 97 patients from Puerto Rico and 12 U.S.-based patients with confirmed COVID-19 were tested using the DENV Detect IgM Capture enzyme-linked immunosorbent assay (ELISA) (InBios International).* In addition, 122 serum specimens from patients with confirmed dengue and 121 from patients with confirmed Zika virus disease (all from Puerto Rico) were tested using the SARS-CoV-2 pan-Ig Spike Protein ELISA (CDC).† Results obtained for DENV, Zika virus IgM, and SARS-CoV-2 antibodies indicated 98% test specificity and minimal levels of cross-reactivity between the two flaviviruses and SARS-CoV-2. These findings indicate that diagnoses of dengue or Zika virus diseases with the serological assays described in this report are not affected by COVID-19, nor do dengue or Zika virus diseases interfere with the diagnosis of COVID-19.


Assuntos
Anticorpos Antivirais/sangue , Vírus da Dengue/imunologia , Imunoglobulina M/imunologia , SARS-CoV-2/imunologia , Testes Sorológicos , Zika virus/imunologia , COVID-19/diagnóstico , Reações Cruzadas/imunologia , Dengue/diagnóstico , Ensaio de Imunoadsorção Enzimática , Humanos , Porto Rico , Sensibilidade e Especificidade , Estados Unidos , Infecção por Zika virus/diagnóstico
5.
PLoS Negl Trop Dis ; 16(2): e0009848, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35143495

RESUMO

Across the Pacific, and including in the Solomon Islands, outbreaks of arboviruses such as dengue, chikungunya, and Zika are increasing in frequency, scale and impact. Outbreaks of mosquito-borne disease have the potential to overwhelm the health systems of small island nations. This study mapped the seroprevalence of dengue, Zika, chikungunya and Ross River viruses in 5 study sites in the Solomon Islands. Serum samples from 1,021 participants were analysed by ELISA. Overall, 56% of participants were flavivirus-seropositive for dengue (28%), Zika (1%) or both flaviviruses (27%); and 53% of participants were alphavirus-seropositive for chikungunya (3%), Ross River virus (31%) or both alphaviruses (18%). Seroprevalence for both flaviviruses and alphaviruses varied by village and age of the participant. The most prevalent arboviruses in the Solomon Islands were dengue and Ross River virus. The high seroprevalence of dengue suggests that herd immunity may be a driver of dengue outbreak dynamics in the Solomon Islands. Despite being undetected prior to this survey, serology results suggest that Ross River virus transmission is endemic. There is a real need to increase the diagnostic capacities for each of the arboviruses to support effective case management and to provide timely information to inform vector control efforts and other outbreak mitigation interventions.


Assuntos
Infecções por Alphavirus/sangue , Febre de Chikungunya/sangue , Vírus Chikungunya/imunologia , Vírus da Dengue/imunologia , Dengue/sangue , Vírus do Rio Ross/imunologia , Infecção por Zika virus/sangue , Zika virus/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Infecções por Alphavirus/epidemiologia , Infecções por Alphavirus/virologia , Anticorpos Antivirais/sangue , Febre de Chikungunya/epidemiologia , Febre de Chikungunya/virologia , Vírus Chikungunya/genética , Vírus Chikungunya/isolamento & purificação , Criança , Pré-Escolar , Dengue/epidemiologia , Dengue/virologia , Vírus da Dengue/genética , Vírus da Dengue/isolamento & purificação , Feminino , Humanos , Masculino , Melanesia/epidemiologia , Pessoa de Meia-Idade , Vírus do Rio Ross/genética , Vírus do Rio Ross/isolamento & purificação , Estudos Soroepidemiológicos , Adulto Jovem , Zika virus/genética , Zika virus/isolamento & purificação , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/virologia
7.
Viruses ; 14(2)2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35215813

RESUMO

The transmission of dengue and other medically important mosquito-borne viruses in the westernmost region of Indonesia is not well described. We assessed dengue and Zika virus seroprevalence in Aceh province, the westernmost area of the Indonesian archipelago. Serum samples collected from 199 randomly sampled healthy residents of Aceh Jaya in 2017 were analyzed for neutralizing antibodies by plaque reduction neutralization test (PRNT). Almost all study participants (198/199; 99.5%) presented with multitypic profiles of neutralizing antibodies to two or more DENV serotypes, indicating transmission of multiple DENV in the region prior to 2017. All residents were exposed to one or more DENV serotypes by the age of 30 years. The highest geometric mean titers were measured for DENV-4, followed by DENV-1, DENV-2 and DENV-3. Among a subset of 116 sera, 27 neutralized ZIKV with a high stringency (20 with PRNT90 > 10 and 7 with PRNT90 > 40). This study showed that DENV is hyperendemic in the westernmost region of the Indonesian archipelago and suggested that ZIKV may have circulated prior to 2017.


Assuntos
Anticorpos Antivirais/sangue , Vírus da Dengue/imunologia , Dengue/sangue , Infecção por Zika virus/sangue , Zika virus/imunologia , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Dengue/epidemiologia , Dengue/virologia , Vírus da Dengue/classificação , Vírus da Dengue/genética , Vírus da Dengue/isolamento & purificação , Feminino , Humanos , Indonésia/epidemiologia , Masculino , Pessoa de Meia-Idade , Testes de Neutralização , Estudos Soroepidemiológicos , Adulto Jovem , Zika virus/classificação , Zika virus/genética , Zika virus/isolamento & purificação , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/virologia
8.
Viruses ; 14(2)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35215836

RESUMO

Arboviral infections such as Chikungunya (CHIKV), Dengue (DENV) and Zika (ZIKV) are a major disease burden in tropical and sub-tropical countries, and there are no effective vaccinations or therapeutic drugs available at this time. Understanding the role of the T cell response is very important when designing effective vaccines. Currently, comprehensive identification of T cell epitopes during a DENV infection shows that CD8 and CD4 T cells and their specific phenotypes play protective and pathogenic roles. The protective role of CD8 T cells in DENV is carried out through the killing of infected cells and the production of proinflammatory cytokines, as CD4 T cells enhance B cell and CD8 T cell activities. A limited number of studies attempted to identify the involvement of T cells in CHIKV and ZIKV infection. The identification of human immunodominant ZIKV viral epitopes responsive to specific T cells is scarce, and none have been identified for CHIKV. In CHIKV infection, CD8 T cells are activated during the acute phase in the lymph nodes/blood, and CD4 T cells are activated during the chronic phase in the joints/muscles. Studies on the role of T cells in ZIKV-neuropathogenesis are limited and need to be explored. Many studies have shown the modulating actions of T cells due to cross-reactivity between DENV-ZIKV co-infections and have repeated heterologous/homologous DENV infection, which is an important factor to consider when developing an effective vaccine.


Assuntos
Febre de Chikungunya/imunologia , Dengue/imunologia , Linfócitos T/imunologia , Infecção por Zika virus/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Febre de Chikungunya/terapia , Vírus Chikungunya/imunologia , Reações Cruzadas , Dengue/terapia , Vírus da Dengue/imunologia , Epitopos de Linfócito T/imunologia , Humanos , Desenvolvimento de Vacinas , Vacinas Virais , Zika virus/imunologia , Infecção por Zika virus/terapia
9.
Viruses ; 14(2)2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35215843

RESUMO

High levels of T helper 17 cell (Th17)-related cytokines have been shown in acute Zika virus (ZIKV) infection. We hypothesized that the high levels of Th17-related cytokines, associated with a regulatory environment during pregnancy, create a favorable milieu for the differentiation of CD4+Th17 cells. We present data from a cross-sectional study on mothers who confirmed ZIKV infection by qRT-PCR and their children. We also recruited non-pregnant women infected with ZIKV in the same period. ZIKV infection occurred between 2015 and 2017. We collected samples for this study between 2018 and 2019, years after the initial infection. We highlight that, after in vitro stimulation with ZIKV CD4 megapool (ZIKV MP), we found a lower frequency of IL-17-producing CD4+ T cells (Th17), especially in the mothers, confirmed by the decrease in IL-17 production in the supernatant. However, a higher frequency of CD4+ IL-17+ IFN-γ+ T cells (Th1Th17) responding to the ZIKV MP was observed in the cells of the mothers and children but not in those of the non-pregnant women. Our data indicate that the priming of CD4 T cells of the Th1Th17 phenotype occurred preferentially in the mothers who gave birth to children with CZS and in the children.


Assuntos
Mães , Complicações Infecciosas na Gravidez/imunologia , Subpopulações de Linfócitos T/imunologia , Células Th17/imunologia , Infecção por Zika virus/imunologia , Adulto , Linfócitos T CD4-Positivos/imunologia , Pré-Escolar , Estudos Transversais , Feminino , Humanos , Lactente , Interferon gama/imunologia , Interleucina-17/imunologia , Células T de Memória/imunologia , Pessoa de Meia-Idade , Gravidez , Receptores CCR6/imunologia , Células Th1/imunologia , Adulto Jovem , Zika virus/imunologia
10.
Viruses ; 14(2)2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35215960

RESUMO

Zika virus (ZIKV) epidemiological data in Thailand are limited. We assessed ZIKV IgG seroprevalence among young adults during 1997-2017 and determined factors associated with ZIKV IgG seropositivity. This retrospective laboratory study included randomly selected subjects aged 18-25 years participating in large clinical studies conducted in Thailand during 1997-2017. Stored plasma samples were analyzed for ZIKV IgG using an ELISA test (Anti-Zika Virus IgG, EUROIMMUN, Lübeck, Germany). Sociodemographic, clinical and laboratory data were used in univariable and multivariable analyses to identify factors associated with ZIKV IgG positivity. Of the 1648 subjects included, 1259 were pregnant women, 844 were living with HIV and 111 were living with HBV. ZIKV IgG seroprevalence was similar among the HIV-infected and -uninfected pregnant women (22.8% vs. 25.8%, p-value = 0.335) and was overall stable among the pregnant women, with a 25.2% prevalence. Factors independently associated with ZIKV IgG positivity included an age of 23-25 years as compared to 18-20 years, an HIV RNA load below 3.88 log10 copies/mL and birth in regions outside northern Thailand. Our study shows that a large proportion of the population in Thailand probably remains susceptible to ZIKV infection, which could be the ground for future outbreaks. Continued surveillance of ZIKV spread in Thailand is needed to inform public health policies.


Assuntos
Anticorpos Antivirais/sangue , Infecções por HIV/complicações , Imunoglobulina G/sangue , Infecção por Zika virus/epidemiologia , Zika virus/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Infecções por HIV/epidemiologia , HIV-1/genética , Humanos , Modelos Logísticos , Masculino , Gravidez , Gestantes , Estudos Retrospectivos , Estudos Soroepidemiológicos , Tailândia/epidemiologia , Adulto Jovem , Infecção por Zika virus/diagnóstico
12.
PLoS Negl Trop Dis ; 16(1): e0009986, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35061659

RESUMO

Understanding the burden and risk factors of dengue virus (DENV) infection in Puerto Rico is important for the prevention of dengue in local, traveler and military populations. Using sera from the Department of Defense Serum Repository, we estimated the prevalence and predictors of DENV seropositivity in those who had served in Puerto Rico, stratified by birth or prior residence ("birth/residence") in dengue-endemic versus non-endemic regions. We selected sera collected in early 2015 from 500 U.S. military members, a time-point also permitting detection of early cryptic Zika virus (ZIKV) circulation. 87.2% were born or resided in a DENV-endemic area before their military service in Puerto Rico. A high-throughput, flow-cytometry-based neutralization assay was employed to screen sera for ZIKV and DENV neutralizing antibodies, and confirmatory testing was done by plaque-reduction neutralization test (PRNT). We identified one Puerto Rico resident who seroconverted to ZIKV by June 2015, suggesting cryptic ZIKV circulation in Puerto Rico at least 4 months before the first reported cases. A further six PRNT-positive presumptive ZIKV infections which were resolved as DENV infections only by the use of paired sera. We noted 66.8% of the total study sample was DENV seropositive by early 2015. Logistic regression analysis indicated that birth/residence in a dengue non-endemic region (before military service in Puerto Rico) was associated with a lower odds of DENV exposure by January-June 2015 (aOR = 0.28, p = 0.001). Among those with birth/residence in a non-endemic country, we noted moderate evidence to support increase in odds of DENV exposure for each year of military service in Puerto Rico (aOR = 1.58, p = 0.06), but no association with age. In those with birth/residence in dengue-endemic regions (before military service in Puerto Rico), we noted that age (aOR = 1.04, p = 0.02), rather than duration of Puerto Rico service, was associated with dengue seropositivity, suggesting earlier lifetime DENV exposure. Our findings provide insights into the burden and predictors of DENV infection in local, traveler and military populations in Puerto Rico. Our study also highlights substantial PRNT ZIKV false-positivity when paired sera are not available, even during periods of very low ZIKV prevalence.


Assuntos
Dengue/epidemiologia , Militares , Infecção por Zika virus/epidemiologia , Adulto , Anticorpos Neutralizantes/sangue , Vírus da Dengue/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência , Porto Rico/epidemiologia , Características de Residência , Fatores de Risco , Estudos Soroepidemiológicos , Estados Unidos , Zika virus/imunologia
13.
Sci Rep ; 12(1): 53, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34997041

RESUMO

Zika virus (ZIKV) is an arbovirus from the Flaviviridae family and Flavivirus genus. Neurological events have been associated with ZIKV-infected individuals, such as Guillain-Barré syndrome, an autoimmune acute neuropathy that causes nerve demyelination and can induce paralysis. With the increase of ZIKV infection incidence in 2015, malformation and microcephaly cases in newborns have grown considerably, which suggested congenital transmission. Therefore, the development of an effective vaccine against ZIKV became an urgent need. Live attenuated vaccines present some theoretical risks for administration in pregnant women. Thus, we developed an in silico multiepitope vaccine against ZIKV. All structural and non-structural proteins were investigated using immunoinformatics tools designed for the prediction of CD4 + and CD8 + T cell epitopes. We selected 13 CD8 + and 12 CD4 + T cell epitopes considering parameters such as binding affinity to HLA class I and II molecules, promiscuity based on the number of different HLA alleles that bind to the epitopes, and immunogenicity. ZIKV Envelope protein domain III (EDIII) was added to the vaccine construct, creating a hybrid protein domain-multiepitope vaccine. Three high scoring continuous and two discontinuous B cell epitopes were found in EDIII. Aiming to increase the candidate vaccine antigenicity even further, we tested secondary and tertiary structures and physicochemical parameters of the vaccine conjugated to four different protein adjuvants: flagellin, 50S ribosomal protein L7/L12, heparin-binding hemagglutinin, or RS09 synthetic peptide. The addition of the flagellin adjuvant increased the vaccine's predicted antigenicity. In silico predictions revealed that the protein is a probable antigen, non-allergenic and predicted to be stable. The vaccine's average population coverage is estimated to be 87.86%, which indicates it can be administered worldwide. Peripheral Blood Mononuclear Cells (PBMC) of individuals with previous ZIKV infection were tested for cytokine production in response to the pool of CD4 and CD8 ZIKV peptide selected. CD4 + and CD8 + T cells showed significant production of IFN-γ upon stimulation and IL-2 production was also detected by CD8 + T cells, which indicated the potential of our peptides to be recognized by specific T cells and induce immune response. In conclusion, we developed an in silico universal vaccine predicted to induce broad and high-coverage cellular and humoral immune responses against ZIKV, which can be a good candidate for posterior in vivo validation.


Assuntos
Biologia Computacional/métodos , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Proteínas Virais/imunologia , Vacinas Virais/química , Vacinas Virais/imunologia , Zika virus/imunologia , Adjuvantes Imunológicos , Autoimunidade , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Citocinas/metabolismo , Epitopos de Linfócito B/química , Epitopos de Linfócito T/química , Flagelina/imunologia , Humanos , Imunidade Humoral , Imunogenicidade da Vacina , Lectinas/imunologia , Leucócitos Mononucleares/imunologia , Peptídeos/imunologia , Filogenia , Proteínas Ribossômicas/imunologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologia , Proteínas Virais/química , Zika virus/química , Infecção por Zika virus/imunologia , Infecção por Zika virus/virologia
14.
Sci Rep ; 12(1): 660, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35027643

RESUMO

Zika virus (ZIKV) is a mosquito-borne virus that has a high risk of inducing Guillain-Barré syndrome and microcephaly in newborns. Because vaccination is considered the most effective strategy against ZIKV infection, we designed a recombinant vaccine utilizing the baculovirus expression system with two strains of ZIKV envelope protein (MR766, Env_M; ZBRX6, Env_Z). Animals inoculated with Env_M and Env_Z produced ZIKV-specific antibodies and secreted effector cytokines such as interferon-γ, tumor necrosis factor-α, and interleukin-12. Moreover, the progeny of immunized females had detectable maternal antibodies that protected them against two ZIKV strains (MR766 and PRVABC59) and a Dengue virus strain. We propose that the baculovirus expression system ZIKV envelope protein recombinant provides a safe and effective vaccine strategy.


Assuntos
Baculoviridae/imunologia , Imunidade Celular , Imunidade Humoral , Imunocompetência/imunologia , Vacinas Sintéticas , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/fisiologia , Vacinas Virais/imunologia , Infecção por Zika virus/imunologia , Infecção por Zika virus/virologia , Zika virus/imunologia , Animais , Masculino , Camundongos Endogâmicos C57BL
15.
ACS Appl Mater Interfaces ; 14(1): 41-48, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34932313

RESUMO

Zika virus (ZIKV) infection is associated with the Guillain-Barré syndrome, and when non-vector congenital transmission occurs, fetal brain abnormalities are expected. After ZIKV infection, the blood, breast milk, and other body fluids contain low viral loads. Their detection is challenging as it requires the processing of larger input volumes of the clinical samples. Pre-enrichment is a valuable strategy to increase the analyte concentration. Therefore, the authors propose the use of a hierarchal composite polyaniline-(electrospun nanofiber) hydrogel mat (ENM) for the simultaneous enrichment and impedimetric sensing of ZIKV viral particles. The electrospinning conditions of polyvinyl alcohol and alginate, including blend formulation, were optimized through a factorial design. Disintegration and gelatinization were controlled via cross-linking to improve the hydrogel properties. Hierarchization was achieved by in situ chemical deposition of conductive polyaniline. The carboxyl groups of the ENM were used for the covalent immobilization of anti-ZIKV polyclonal antibodies used in the specific recognition of ZIKV within the medium of Vero cell culture. The specific capture and desorption of virions were studied at different pHs. ENMs were characterized by scanning electron microscopy and FTIR. Atomic force microscopy along with UV-vis and electrochemical impedance spectroscopies was used to monitor the antibody immobilization, ZIKV capture, and elution processes. Our results show that 14.2 mg (0.25 cm3) of ENM can capture 38.7 ± 2.5 µg of ZIKV with a desorption rate of 99.97% (38.29 ± 2.7 µg ZIKV), which is reusable for at least three times. Therefore, the capture capacity (micrograms of ZIKV captured per milligram of ENM) of polyaniline-hierarchized mats was 2.72 µg ZIKV/mg. The impedance LOD value was determined to be 2.76 µg of ZIKV particles (approximately 6.6 × 103 PFU/mL). As a result, we present a fast small-scale purification system that can simultaneously monitor ZIKV electrochemically and optically.


Assuntos
Alginatos/química , Compostos de Anilina/química , Técnicas Biossensoriais/métodos , Nanofibras/química , Carga Viral/métodos , Zika virus/isolamento & purificação , Animais , Anticorpos Imobilizados/imunologia , Anticorpos Antivirais/imunologia , Sangue/virologia , Chlorocebus aethiops , Técnicas Eletroquímicas , Hidrogéis/química , Imunoensaio/métodos , Limite de Detecção , Células Vero , Zika virus/imunologia
16.
Methods Mol Biol ; 2410: 289-302, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34914053

RESUMO

Experimental increase of cytosine-phosphate-guanine (CpG) dinucleotides in an RNA virus genome impairs infection. Beneficially, this weak infection may lead to robust antiviral host immunity providing a cutting-edge approach for vaccines. For example, we have recently demonstrated that recoded Zika virus variants with the increased CpG content showed considerable attenuated infection phenotypes and protection against lethal challenge in mice. Here, we describe the workflow for the design and generation of CpG-recoded Zika virus vaccine candidates. The workflow can be adapted for other viruses.


Assuntos
Infecção por Zika virus , Zika virus , Animais , Anticorpos Antivirais , Camundongos , Fosfatos , Vacinas Virais , Zika virus/imunologia , Infecção por Zika virus/prevenção & controle
17.
Sci Rep ; 11(1): 23696, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34880409

RESUMO

Arboviruses such as dengue (DENV), Zika (ZIKV) and chikungunya (CHIKV) viruses infect close to half a billion people per year, and are primarily transmitted through Aedes aegypti bites. Infection-induced changes in mosquito salivary glands (SG) influence transmission by inducing antiviral immunity, which restricts virus replication in the vector, and by altering saliva composition, which influences skin infection. Here, we profiled SG proteome responses to DENV serotype 2 (DENV2), ZIKV and CHIKV infections by using high-resolution isobaric-tagged quantitative proteomics. We identified 218 proteins with putative functions in immunity, blood-feeding or related to the cellular machinery. We observed that 58, 27 and 29 proteins were regulated by DENV2, ZIKV and CHIKV infections, respectively. While the regulation patterns were mostly virus-specific, we separately depleted four uncharacterized proteins that were upregulated by all three viral infections to determine their effects on these viral infections. Our study suggests that gamma-interferon responsive lysosomal thiol-like (GILT-like) has an anti-ZIKV effect, adenosine deaminase (ADA) has an anti-CHIKV effect, salivary gland surface protein 1 (SGS1) has a pro-ZIKV effect and salivary gland broad-spectrum antiviral protein (SGBAP) has an antiviral effect against all three viruses. The comprehensive description of SG responses to three global pathogenic viruses and the identification of new restriction factors improves our understanding of the molecular mechanisms influencing transmission.


Assuntos
Aedes/fisiologia , Aedes/virologia , Vírus Chikungunya/imunologia , Vírus da Dengue/imunologia , Interações Hospedeiro-Patógeno/imunologia , Glândulas Salivares/fisiologia , Glândulas Salivares/virologia , Zika virus/imunologia , Aedes/classificação , Animais , Cromatografia Líquida , Biologia Computacional/métodos , Resistência à Doença , Feminino , Filogenia , Proteômica/métodos , Espectrometria de Massas em Tandem
18.
Am J Trop Med Hyg ; 106(2): 585-592, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34929668

RESUMO

Serological cross-reactivity has proved to be a challenge to diagnose Zika virus (ZIKV) infections in dengue virus (DENV) endemic countries. Confirmatory testing of ZIKV IgM positive results by plaque reduction neutralization tests (PRNTs) provides clarification in only a minority of cases because most individuals infected with ZIKV were previously exposed to DENV. The goal of this study was to evaluate the performance of a ZIKV/DENV DUO IgM antibody capture ELISA (MAC-ELISA) for discriminating between DENV and ZIKV infections in endemic regions. Our performance evaluation included acute and convalescent specimens from patients with real-time reverse transcription polymerase chain reaction (RT-PCR)-confirmed DENV or ZIKV from the Sentinel Enhanced Dengue Surveillance System in Ponce, Puerto Rico. The ZIKV/DENV DUO MAC-ELISA specificity was 100% for DENV (N = 127) and 98.4% for ZIKV (N = 275) when specimens were tested during the optimal testing window (days post-onset of illness [DPO] 6-120). The ZIKV/DENV DUO MAC-ELISA sensitivity of RT-PCR confirmed specimens reached 100% for DENV by DPO 6 and for ZIKV by DPO 9. Our new ZIKV/DENV DUO MAC-ELISA was also able to distinguish ZIKV and DENV regardless of previous DENV exposure. We conclude this novel serologic diagnostic assay can accurately discriminate ZIKV and DENV infections. This can potentially be useful considering that the more labor-intensive and expensive PRNT assay may not be an option for confirmatory diagnosis in areas that lack PRNT capacity, but experience circulation of both DENV and ZIKV.


Assuntos
Anticorpos Antivirais/imunologia , Dengue/diagnóstico , Ensaio de Imunoadsorção Enzimática/métodos , Imunoglobulina M/imunologia , Infecção por Zika virus/diagnóstico , Reações Cruzadas , Dengue/imunologia , Dengue/transmissão , Vírus da Dengue/imunologia , Doenças Endêmicas , Feminino , Humanos , Masculino , Testes Sorológicos/métodos , Proteínas não Estruturais Virais , Zika virus/imunologia , Infecção por Zika virus/imunologia , Infecção por Zika virus/transmissão
19.
Nat Commun ; 12(1): 7320, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34916486

RESUMO

The development of a safe and effective Zika virus (ZIKV) vaccine has become a global health priority since the widespread epidemic in 2015-2016. Based on previous experience in using the well-characterized and clinically proven dengue virus serotype-2 (DENV-2) PDK-53 vaccine backbone for live-attenuated chimeric flavivirus vaccine development, we developed chimeric DENV-2/ZIKV vaccine candidates optimized for growth and genetic stability in Vero cells. These vaccine candidates retain all previously characterized attenuation phenotypes of the PDK-53 vaccine virus, including attenuation of neurovirulence for 1-day-old CD-1 mice, absence of virulence in interferon receptor-deficient mice, and lack of transmissibility in the main mosquito vectors. A single DENV-2/ZIKV dose provides protection against ZIKV challenge in mice and rhesus macaques. Overall, these data indicate that the ZIKV live-attenuated vaccine candidates are safe, immunogenic and effective at preventing ZIKV infection in multiple animal models, warranting continued development.


Assuntos
Vírus da Dengue/imunologia , Vacinas Virais/administração & dosagem , Infecção por Zika virus/prevenção & controle , Zika virus/imunologia , Animais , Anticorpos Antivirais/imunologia , Vírus da Dengue/genética , Feminino , Humanos , Macaca mulatta/imunologia , Macaca mulatta/virologia , Masculino , Camundongos , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas Virais/genética , Vacinas Virais/imunologia , Zika virus/genética , Infecção por Zika virus/imunologia , Infecção por Zika virus/virologia
20.
Cell ; 184(25): 6067-6080.e13, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34852238

RESUMO

The human monoclonal antibody (HmAb) C10 potently cross-neutralizes Zika virus (ZIKV) and dengue virus. Analysis of antibody fragment (Fab) C10 interactions with ZIKV and dengue virus serotype 2 (DENV2) particles by cryoelectron microscopy (cryo-EM) and amide hydrogen/deuterium exchange mass spectrometry (HDXMS) shows that Fab C10 binding decreases overall ZIKV particle dynamics, whereas with DENV2, the same Fab causes increased dynamics. Testing of different Fab C10:DENV2 E protein molar ratios revealed that, at higher Fab ratios, especially at saturated concentrations, the Fab enhanced viral dynamics (detected by HDXMS), and observation under cryo-EM showed increased numbers of distorted particles. Our results suggest that Fab C10 stabilizes ZIKV but that with DENV2 particles, high Fab C10 occupancy promotes E protein dimer conformational changes leading to overall increased particle dynamics and distortion of the viral surface. This is the first instance of a broadly neutralizing antibody eliciting virus-specific increases in whole virus particle dynamics.


Assuntos
Anticorpos Neutralizantes , Vírus da Dengue , Dengue , Proteínas do Envelope Viral , Infecção por Zika virus , Zika virus , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/imunologia , Reações Cruzadas , Dengue/imunologia , Dengue/virologia , Vírus da Dengue/imunologia , Vírus da Dengue/fisiologia , Humanos , Ligação Proteica , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/metabolismo , Zika virus/imunologia , Zika virus/fisiologia , Infecção por Zika virus/imunologia , Infecção por Zika virus/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...